Protective Effect and Mechanism of Total Flavones from Rhododendron simsii Planch on Endothelium-Dependent Dilatation and Hyperpolarization in Cerebral Ischemia-Reperfusion and Correlation to Hydrogen Sulphide Release in Rats

نویسندگان

  • Jun Han
  • Guo-Wei He
  • Zhi-Wu Chen
چکیده

We for the first time investigated the effect and mechanism of the total flavones of Rhododendron simsii Planch (TFR), a widely-used Chinese herb for a thousand years, on vasodilatation and hyperpolarization in middle cerebral artery (MCA) of rats subject to global cerebral ischemia-reperfusion (CIR). TFR (11~2700 mg/L) evoked dose-dependent vasodilation and hyperpolarization in MCA of both sham and CIR that were partially inhibited by 30 μM N-nitro-L-arginine-methyl-ester and 10 μM indomethacin and further attenuated by endogenous H2S synthese-CSE inhibitor PPG (100 μM) or Ca(2+)-activated potassium channel (Kca) inhibitor TEA (1 mM). In whole-cell patch clamp recording, TFR remarkably enhanced the outward current that was inhibited by TEA. CIR increased CSE mRNA expression and the contents of H2S that were further increased by TFR. We conclude that, in MCA of CIR rats, TFR induces non-NO and non-PGI2-mediated effects of vasodilatation and hyperpolarization involving Kca and increases CSE mRNA expression level in endothelial cells and H2S content in the cerebrum. These findings suggest that the response induced by TFR is potentially related to endothelium-derived hyperpolarizing factor mediated by the endogenous H2S and promote the use of TFR in protection of brain from ischemia-reperfusion injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Protective Effect of Total Flavones from Rhododendron simsii Planch. on Myocardial Ischemia/Reperfusion Injury and Its Underlying Mechanism

Objectives Total flavones from Rhododendron simsii Planch. (TFR) are the effective part extracted from the flowers of Rhododendron simsii Planch. and have obvious protective effects against cerebral ischemic or myocardial injuries in rabbits and rats. However, their mechanism of cardioprotection is still unrevealed. Therefore, the present study was designed to investigate the effect of TFR on m...

متن کامل

Protective Effect and Mechanism of Total Flavones from Rhododendron simsii Planch Flower on Cultured Rat Cardiomyocytes with Anoxia and Reoxygenation

Many flavonoids have cardioprotection against myocardial ischemia/reperfusion (I/R) injury. Total flavones from Rhododendron simsii Planch flower (TFR) can protect myocardial ischemic injuries. However, its protective mechanism is still unknown. The present study was designed to investigate the mechanism of TFR on myocardial I/R and anoxia/reoxygenation (A/R) injuries. Rat model of myocardial I...

متن کامل

Steroidal alkaloids isolated from leaf (olea Europaea) decreased cerebral ischemic – induced inury on rats

Background: The steroidal alkaloids incurring great interest because of their various pharmacological properties that isolated from various species. The aim of this investigation has been to studying of the effects of Steroidal alkaloids isolated from olive leaf on cerebral ischemic – induced inury on rats. Materials and methods: In this experimental study, 48 male wistar rats divided to s...

متن کامل

The Effect of Pistacia vera L. Gum Extract on Oxidative Damage during Experimental Cerebral Ischemia-Reperfusion in Rats

Oxygen free radicals may be implicated in the pathogenesis of ischemia reperfusion damage. As the antioxidant effects of some species of Pistacia have been reported, the protective effects of Pistacia vera L. gum extract (0.1-0.5 g/kg) on oxidative damage following cerebral ischemia were studied in rats. Ischemia was induced using four-vessel occlusion model and evaluated using measurement of m...

متن کامل

Effect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat

Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014